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Fires are a major contributor to atmospheric budgets of greenhouse
gases and aerosols, affect soils and vegetation properties, and are a
key driver of land use change. Since the 1990s, global burned area
(BA) estimates based on satellite observations have provided critical
insights into patterns and trends of fire occurrence. However, these
global BA products are based on coarse spatial-resolution sensors,
which are unsuitable for detecting small fires that burn only a frac-
tion of a satellite pixel. We estimated the relevance of those small
fires by comparing a BA product generated from Sentinel-2 MSI
(Multispectral Instrument) images (20-m spatial resolution) with a
widely used global BA product based on Moderate Resolution Im-
aging Spectroradiometer (MODIS) images (500 m) focusing on sub-
Saharan Africa. For the year 2016, we detected 80% more BA with
Sentinel-2 images than with theMODIS product. This difference was
predominately related to small fires: we observed that 2.02 Mkm2

(out of a total of 4.89 Mkm2) was burned by fires smaller than 100
ha, whereas the MODIS product only detected 0.13 million km2 BA
in that fire-size class. This increase in BA subsequently resulted in
increased estimates of fire emissions; we computed 31 to 101%
more fire carbon emissions than current estimates based on MODIS
products. We conclude that small fires are a critical driver of BA in
sub-Saharan Africa and that including those small fires in emission
estimates raises the contribution of biomass burning to global bur-
dens of (greenhouse) gases and aerosols.
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Fire plays an important role in the Earth system, impacting cli-
mate and air quality and affecting vegetation, soils, and human

assets (1–3). Global annual BA is currently estimated to be between
4.2 and 4.7 million km2 (4–6). Fires burn naturally in many eco-
systems, but currently, the majority of fires have an anthropogenic
origin and are often used as a land management tool [e.g., in the
deforestation process (4, 5)]. Fires impact climate by releasing
greenhouse gases and aerosols and by modifying surface albedo
(6–8).
Satellite sensors are the preferred way to estimate BA, as they

provide frequent and comprehensive observations of surface re-
flectance and thermal properties (9). However, most existing
products are based on coarse spatial-resolution images (≥500 m),
which provide a global view of fire occurrence almost daily but
may have important omission and commission errors, particularly
where fires are small in size (10). In fact, several regional assess-
ments of those global BA products have identified substantial
omission errors when compared to fire perimeters (11–15). Omis-
sion of small fires may be the cause of observing higher omission
than commission errors in existing validation efforts of global BA
products (15–17).
A first approach to estimate the contribution of these small

fires was proposed by Randerson et al. (18) based on a statistical
method overlaying BA and active fire detections. They estimated

that small fires led to an additional 24 to 54% BA compared to
previous estimates. Thanks to recent developments in satellite
instruments and computing power, we can now map BA with
substantially higher spatial resolution (≤30 m) and for large
geographic regions (19–21), reducing the dependency on statis-
tical methods and active fire detections.
Our main goal was to compare a new BA dataset generated from

medium-resolution images and its resulting fire carbon emissions
with existing information based on global BA datasets derived from
coarse-resolution data. We focused our analysis on Africa, as it
accounts for about 70% of global BA (22) and about half of global
fire carbon emissions (23). The medium-resolution BA product was
developed from Sentinel-2 MultiSpectral Instrument (MSI) data
under the Fire Disturbance project of the European Space Agency’s
Climate Change Initiative (CCI) program. The product, named
FireCCISFD11, covers the whole of sub-Saharan Africa at 20-m
resolution for the year 2016 (21) (see Materials and Methods). We
have compared this product with three global BA datasets derived
from MODIS data: MCD64A1C6 (22), the Global Fire Emission
Database version 4s (GFED4s) (23), and the Global Fire Atlas
(GFA) (24). MCD64A1C6 is the most recent version of a widely
used BA product for global analysis of biomass burning impacts (9,
25). GFED4s is based on an older version of the MCD64A1 dataset
(C5.1) but includes BA estimates from small fires based on a
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fossil fuel burning. We conclude that small fires are critically
important in characterizing the most important disturbance
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statistical approach. This product is only available at 0.25° spatial
resolution (23). The GFA was derived from the MCD64A1C6
product. It generates burned patches from detected burned pixels
using contextual analysis (24). Our comparative analysis between
FireCCISFD11 and global products included total BA (with
MCD64A1 and GFED4s), fire size distribution (with MCD64A1
and GFA), BA stratified by land cover (MCD64A1), and fire
emissions (derived from MCD64A1 and GFED4s).

Revised BA Estimates
The FireCCISFD11 product detected 4.89 Mkm2 of BA for all of
sub-Saharan Africa (representing 16% of the total land area of
the region). For the same year and area, this estimate is 80%
higher than the BA detected by the MCD64A1C6 product (2.72
Mkm2) and 63% higher than GFED4s (2.98 Mkm2). Most BA
occurred around the 10°N and 10 to 20°S latitude belts (Fig. 1A),
which are mostly occupied by savannas. These areas generally
receive enough precipitation during the wet season for fuel
buildup, while the dry season is long enough to dry out the fuels.
No BA was observed in desert areas with little available fuel, and
small amounts of BA were found around the Equator where the
dry season is short and the vegetation is less susceptible to fire.
While the FireCCISFD11 product had substantially more BA

than GFED4s, the general spatial distribution of BA between the
products was found to be similar (Fig. 1). The largest differences
between the two products were observed in the Northern Hemi-
sphere in Kenya (203% more BA), Cameroon (+122%), Guinea-
Bissau (+117%), and Nigeria (+83%) and in the Southern
Hemisphere in Malawi (+255%), South Africa (+177%), Tanzania
(+104%), and Madagascar (+199%). In terms of land cover, as
defined by the classes of the S2 Land cover Map for Africa with
20-m spatial resolution (26), the largest increase was observed in
shrublands (173% more BA), forests (+163%), grasslands
(+191%), and croplands (+270%). In some areas of Sudan and
Congo, GFED4s showed more BA than FireCCISFD11, mostly
due to a smaller sample of valid observations from the Sentinel-2
MSI sensor compared to the MODIS BA products as well as the
longer revisit times of MSI over MODIS sensors (10 versus 1 d).

Fire-Size Distribution: Relevance of Small Fires
Fig. 1C shows that FireCCISFD11 exceeded other BA products
almost everywhere, and differences between the BA estimates
were mostly dependent on BA patch size (Table 1). Small fires
(<100 ha or roughly 4 MODIS 500-m pixels) accounted for
41.35% of overall BA in the FireCCISFD11 product but only
4.77% in MCD64A1C6 and 4.92% in the GFA. As a result, the
FireCCISFD11 product estimated 15.61 times more BA in this
fire-size class than the MCD64A1 product (2.02 versus 0.13
Mkm2) and 16.24 times more than the GFA (0.12 Mkm2). The
difference in BA estimates between FireCCISFD11 and the other
BA products increased with decreasing fire size. This was expected
because smaller fires are less likely to be detected by coarse-
resolution products. In fact, from the fires smaller than 25 ha
(roughly 1 MODIS 500-m pixel) detected by the FireCCISFD11
product, only 2.09% were included in the MCD64A1C6 product
and 2.23% in the GFA. For larger fires (>100 ha), the estimates
derived from the coarse- and medium-resolution products were
much closer: FireCCISFD11 had only 10.80% more BA in this size
category than MCD64A1C6 and 19.25% more than GFA. These
differences between the medium- and coarse-resolution sensors
were related to a better characterization of large patches identified
in both products, including both undetected pixels in the MODIS
patches and over-detected pixels (unburned islands within burned
patches) (27).
Small fires occurred throughout the study area, but their rel-

ative contribution to total BA was variable and often increased
when total BA decreased (Fig. 2): near the coast of Liberia, Ivory
Coast, Ghana, and Nigeria; in the western regions of Ethiopia,

Mozambique, and Kenya; and in Zimbabwe and eastern South
Africa. However, in some regions with high fire occurrence, the
contribution of small fires to total BA was substantial as well,
such as in Southern Zambia and Western Madagascar.

Seasonal Trends
Besides large differences in total BA, the temporal distribution
of BA occurrence also differed between the FireCCISFD11 and

Fig. 1. Area burned in 2016, expressed as the fraction of each 0.25° grid cell
according to FireCCISFD11 (A), GFED4s (B), and the difference of fractions
between them (FireCCISFD11-GFED4s) (C). The rectangular blank grids in A
correspond to S2 scenes where no active fires were detected by MODIS
sensors in 2016. Therefore, no BA was mapped in those tiles.
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MCD64A1 BA products. According to the MODIS product, 80%
of total BA in Northern Hemisphere Africa occurred during the
4 months of November through February, while 70% of BA in
Southern Hemisphere Africa occurred during the 4 months of
June through September. The FireCCISFD11 product identified a
longer fire season, with 71% and 65% of the total BA occurring in
those four peak months in the Northern and Southern Hemi-
spheres, respectively (Fig. 3). This longer fire season is related to
the improved detection of small fires, as they tend to have a larger
share in fire activity outside the main fire season when more hu-
mid conditions may prevent fire propagation (Fig. 3). Undetected
fires in global BA products thus prolong the fire season into the
transitions between wet and dry seasons. This also implies a longer
period of deteriorated air quality and may explain some of the
long-standing and, until now, poorly explained mismatches be-
tween bottom-up and top-down emission estimates (particularly
CO and aerosols) of the southern Africa fire season (28).

Variability in Relevance of Small Fires between Land Cover
Types
Table 2 shows total BA categorized by fire size over different land
cover classes (see Materials and Methods) for the FireCCISFD11
andMCD64A1C6 products. The savanna and grassland classes were
responsible for most BA in both products (82.6% in FireCCISFD11
and 85.9% in MCD64A1). The differences between them were
most important for fires smaller than 100 ha (Tables 2 and 3).
This was partly due to the larger share of cropland fires detected

by FireCCISFD11 (14.4% of BA in small fires versus 9.4% from
the small fires detected by the MCD64A1 product). Agricultural
fires are difficult to detect, as fire and harvest yield similar changes
in reflectance (29). Even though the increase in BA was largest in
croplands, its contribution to total BA was relatively modest
(Tables 2 and 3) compared to the increases found in grasslands and
savannas. This indicates that uncertainties related to the diffi-
culties in detecting BA in agricultural zones only marginally impact
our overall results.

Emissions Estimates
Fire carbon emission estimates are fraught with uncertainty. According
to GFED4 (without small fires), 0.82 petagrams of carbon (PgC)
was emitted from fires in Africa in 2016, whereas GFED4s esti-
mated 1.09 PgC by incorporating small fires based on a statistical
approach. Uncertainties in these estimates relate not only to the
crude representation of small fires but also to the very coarse
(0.25°) modeling framework in GFED4(s), limiting the usefulness
of ground truthing with local studies. A recent study (30) used the
GFED modeling framework and showed that modeling at 500-m
resolution dramatically improved the agreement with ground-based
studies regarding fuel consumption, the key parameter needed
when translating BA to emissions. Without accounting for small
fires, that study estimated emissions of 0.71 PgC in 2016. The lower
estimate as compared to GFED4(s) was mostly related to lower
fuel consumption, following from the improved model calibration
to ground-based measurements at higher spatial resolution.
We used that modeling framework at 500 m (30) but replaced

the MCD64A1 BA with the CCISFD11 BA aggregated to 500 m
(see Materials and Methods) and estimated fire carbon emissions
of 1.44 PgC (Fig. 4). This is about 31% higher than GFED4s and
more than double (+101%) the estimates by Van Wees (referred
to as MCD64A1 [500 m] emissions in Fig. 4). Given that this
estimate is based on improved BA estimates and can mimic mea-
sured fuel consumption, the estimate is better constrained than
previous numbers. The increase in emissions compared to GFED4s
is substantial, exceeding average annual fire emissions of South
America. This indicates that, when upscaled to the entire globe, the
new FireCCISFD11 BA could lead to substantially higher fire
emissions than currently estimated.

Table 1. BA for 2016 clustered by fire size for FireCCISFD11,
MCD64A1, and the GFA, the difference between the products,
and the relative contribution of each fire-size class to the total
BA estimated by the FireCCISFD11 product

Product

BA by fire size (km2)
% BA in small
fires (<100 ha)<100 ha >100 ha Total

FireCCISFD11 2,024,070 2,871,045 4,895,115 41.35
MCD64A1 129,648 2,591,139 2,720,786 4.77
GFA 124,660 2,407,633 2,532,293 4.92

Fig. 2. Fraction of total BA stemming from fires smaller than 100 ha (plotted on a 0.05° grid) detected by the FireCCISFD11 product. The rectangular blank
tiles correspond to MSI scenes where no active fires were detected and therefore do not include any BA.
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Implications for Our Understanding of Fire and Fire
Emissions
This study compared medium- and coarse-resolution BA prod-
ucts at a continental scale, focusing on sub-Saharan Africa, which
harbors the majority of global BA. We found that current esti-
mates of global BA based on coarse-resolution sensors such as
MODIS should be seen as very conservative (Table 1). A similar
conclusion was gained by Laris (10) when comparing Landsat
and MODIS BA products in a small savanna region of Mali and
by some other authors in various ecosystems (11–15). Our BA
estimates not only affect spatial assessments from previous es-
timations of total BA but also impact seasonal patterns of BA
and fire emissions. The role of small fires has probably increased
over past decades because of increases in population density and
thus infrastructure and agriculture. Both lead to a more frag-
mented landscape that increasingly limits fire size. Since the
resulting smaller fires are less likely to be detected by moderate-
resolution BA products, they could offset part of the decline in
BA observed in global products (18, 31). This hypothesis needs
to be tested with future temporal analyses based on medium-
resolution sensors.
Continental-scale spatial patterns of fire activity were fairly

similar in the FireCCISFD11 and MCD64A1C6 BA datasets, but
the increased amount of BA due to small fires varied regionally,
with larger contributions in savanna and woody savanna areas as
well as in agricultural areas. In addition, the greater proportion

of BA observed during the transitions between wet and dry
seasons in the FireCCISFD11 product suggests that fire seasons
are longer than formerly thought, at least based on our analysis
of the year 2016. The relative prevalence of small fires outside
the regular fire season may be related to anthropogenic influ-
ences on fire regimes, as human fire management tends to
concentrate on periods with higher rainfall rates to inhibit large
fires later in the season when fuels are drier and fires burn more
intensively (32, 33). This extended fire season may help explain
why measurements of atmospheric carbon monoxide or aerosol
concentrations suggest that fire seasons extend beyond the pe-
riod suggested by coarse-resolution observations of BA (28, 34).
The extension of the fire season lengthens the time of enhanced
aerosol concentrations into the rainy season with potentially
important impacts on cloud dynamics and radiative forcing. How-
ever, our most important finding is the systemic and large increase
in BA with implications for atmospheric concentrations of trace
gases and aerosols, ecology, and human exposure to deteriorated
air quality.

Materials and Methods
The FireCCISFD11 product was generated from Sentinel-2 MSI data at 20-m
resolution in combination with active fire observation from MODIS at 1-km
resolution [MCD14ML (35)]. The algorithm used a multitemporal approach to
classify BA using two consecutive acquisitions (21), extending the time span
up to four previous acquisitions in cloudy regions. The MSI images were

Fig. 3. Monthly BA estimates for FireCCISFD11, MCD64A1, and GFED4s for Northern Hemisphere (A) and Southern Hemisphere (B) Africa. The red line shows
the proportion of fires <100 ha to total BA for the FireCCISFD11 product.

Table 2. Total BA due to fires smaller than 100 ha separated by land cover type for
FireCCISFD11 and MCD64A1

BA product Croplands Grasslands Savanna Forests All

FireCCISFD11 (km2) 291,614 751,834 918,108 60,865 2,022,421
MCD64A1 (km2) 12,196 47,303 63,633 5,993 129,126
FireCCISFD11/MCD64A1 23.91 15.89 14.43 10.16 15.66
% of FireCCISFD11 14.42% 37.17% 45.40% 3.01% 100%

Relative differences and total percentage for each size class are shown.
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atmospherically corrected using the Sen2cor module (36), and unburnable
areas were masked using the Scene Classification map, which contains clouds
and cloud shadows, among others. The BA algorithm used the Near Infrared,
Normalized Burned Ratio 2, and Mid‐Infrared Burn Index to perform an initial
classification of burned pixels using fixed thresholds. This classification was
overlaid with MODIS active fires (MCD14ML) in order to localize pixels with a
high burn probability as a way to compute regional thresholds for producing
the final BA classification using a two-stage procedure (first detecting high
burned probability seeds and then extending the burned regions in lower
burned probability neighborhood). The dataset includes the date of detection,
the burn probability, and the land cover affected by the fire.

The MCD64A1C6 (Collection 6 of the MCD64A1 product) BA product was
derived from images acquired by the MODIS sensors onboard the Terra and
Aqua satellites. It has a 500-m spatial resolution and provides daily global fire
information based on level 2 surface-reflectance imagery. The BA algorithm
included different phases. First, time series were extracted based on cloud-free
pixels. Then, a burn-sensitive index was computed based on bands 5 and 7 of
the MODIS sensor (in the short-wave infrared region) to calculate composites.
This information was combined with active fire observations to characterize
prefire and postfire conditions, deriving the fire-related changes. The results of
this phase were used to estimate thresholds to carry out the final BA
assessment (22).

The MCD64A1 BA datasets have been traditionally used as input for GFED,
which is one of the most widely used fire emission datasets in atmospheric
and biogeochemical models (37, 38). In this study, we used the latest version

of GFED, named GFED4s (23). GFED4s uses BA from a previous MCD64A1
dataset, Collection 5.1, but aimed to account for the effects of small fires
using active fire observations from MODIS (18). The contribution of small
fires was estimated using a statistical approach based on overlaying active
fire detections and mapped BA. Even though active fire products have an
even lower spatial resolution than the MCD64A1 products (1 km versus 500 m),
the thermal contrast between hot spots and background surfaces is very large
in the mid infrared band, allowing detection of active fires far smaller than the
pixel resolution. Based on this, the contribution of small fires was computed
using the proportion of active fires that fell inside and outside of the burned
perimeters in combination with ancillary data to assess how much BA an
active fire represents. Using this BA dataset, GFED4s emissions were also
calculated at 0.25° grid level using various additional satellite datasets to
simulate the carbon cycle and fuel consumption (23).

The FireCCISFD11 product was validated using systematic sampling of 52
Sentinel image pairs (100 × 100 km), in which fire perimeters were obtained
from an independent, multitemporal classification approach (39) and then
visually inspected. The validation was performed by land cover types, and it
was based on the Sentinel-2 land cover map generated by the LC-CCI project
(http://www.esa-landcover-cci.org/) (Table 4). Error matrices estimated a
commission error of 8.1% and an omission error of 24.5% with a Dice Co-
efficient (DC) of 0.83. The main commission errors were found in sparse
vegetation, urban areas, and in the borders of clouds/cloud shadows, which
were undetected by the Sentinel Scene Classification Mask. Similar accuracy
values were found for the most relevant land cover types for this study

Table 3. Total BA due to fires larger than 100 ha separated by fire land cover type for
FireCCISFD11 and MCD64A1

BA product Croplands Grasslands Savanna Forest All covers

FireCCISFD11 (km2) 211,594 1,251,064 1,351,521 55,933 2,870,113
MCD64A1 (km2) 173,911 1,136,470 1,233,667 45,231 2,589,280
FireCCISFD11/MCD64A1 1.22 1.10 1.10 1.24 1.11
% of FireCCISFD11 7.37% 43.59% 47.09% 1.95% 100%

Relative differences and total percentage for each size class are shown.

Fig. 4. Monthly carbon emission estimates based on FireCCISFD11 and MCD64A1 BA using the 500-m model by Van Wees et al. (28) and emissions from
GFED4s (0.25°) for Northern Hemisphere (A) and Southern Hemisphere (B) Africa.
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(croplands, shrublands, and forest) with a DC value close to 0.82. Sparse
vegetation, wetlands, and settlements had a very low proportion of the
sample areas (2.5%). Average errors of the FireCCISFD11 product were sig-
nificantly lower than those of existing global products (15, 17, 21). For in-
stance, a recent validation exercise of the MCD64A1 BA product, based on a
stratified random sampling strategy and using Landsat-8 images as refer-
ence sites, estimated a global commission error of 40.2% and a global
omission error of 72.6% (15), confirming the tendency of this global BA
product to underestimate BA.

The generation of burn patches in both the FireCCISFD11 and MCD64A1
products was based on a flood-fill algorithm. Individual patches were
identified, assigning a unique value to pixels that had less than 10 d of
temporal difference (the Sentinel-2 temporal gap) and were connected by a
3 × 3 pixel moving window. After that, the area for each individual fire path
was computed by transforming from geographical to planar coordinates.
This process was applied for each month and tile. When pixels from the first
image of the temporal comparison (tn-1) were unobserved, the comparison
was extended to the second or third prefire image (tn-2 or tn-3). The GFA
(24) developed a more sophisticated method to obtain burn patches based
on fire propagation patterns. The input dataset for the GFA also was the
MCD64A1C6 product, so we were able to compare the impact of using two
different methods to obtain fire patches on the total fire-size distribution of
the continent.

To better characterize the spatial distribution of BA, two auxiliary datasets
were used to construct a land cover map: the land cover dataset developed

using Sentinel 2 images (26, 40) that comprises 10 classes following the
recommendation of the Global Terrestrial Observing System and the Vege-
tation Continuous Fields (41) that shows the percentage of tree or vegeta-
tion cover as a quantitative variable. The land cover map had four classes: 1)
croplands extracted from the Sentinel-2 LC map, 2) grasslands that grouped
those pixels not classified as cropland and that had less than 10% of tree
cover, 3) savanna and woody savannas with a tree cover between 10 and
50%, and 4) forest, which has more than 50% of tree cover.

For the MCD64A1 product, we resampled both the BA and the land cover
to a common pixel size of 100m to reduce errors related to border effects and
to facilitate the processing. The resampling was done using the most dom-
inant categories in both the BA and the land cover products. Using cross-
tabulation analysis, each fire patch was labeled with the fire size and the
number of pixels of each land cover class. From this dataset, the burned
proportion and total BA of each land cover class were computed.

The 500-m resolution fire emission model developed by VanWees and Van
der Werf (30) is a simplified version of the GFED modeling framework based
on BA from the MCD64A1C6 dataset and other MODIS products for the
modeling of aboveground biomass. Mechanisms such as belowground car-
bon dynamics, herbivory, and mechanisms specific to deforestation were not
included, maintaining only the most important functionality for fire emission
estimation. The 500-m model was tuned using satellite-based data on above-
ground biomass (42) and field measurements on fuel load and consumption
(43), also used for the validation of GFED4(s). The substantially higher spatial
resolution of 500 m (versus 0.25° in GFED) led to lower fuel consumption values,
mostly as a result of reduced representation errors in the comparison of the
model to field measurements. This resulted in 24% lower fire emissions (0.68
PgC · yr−1) for the 2002 to 2017 period in sub-Saharan Africa as compared to
GFED4 (without small fires). This model was applied here to calculate emissions
based on FireCCISFD11 and MCD64A1 BA at 500-m resolution. Emissions based
on FireCCISFD11 BA were calculated by replacing the MODIS BA data with the
FireCCISFD11 BA aggregated to 500 m, and results were compared with the
GFED4s emission product.

Data Availability. BA data have been deposited in FireCCISFD11 (https://dx.
doi.org/10.5285/065f6040ef08485db989cbd89d536167) (44).
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